\(\int \frac {a+b \cot (c+d x)}{(e \cot (c+d x))^{3/2}} \, dx\) [54]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 229 \[ \int \frac {a+b \cot (c+d x)}{(e \cot (c+d x))^{3/2}} \, dx=-\frac {(a-b) \arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{3/2}}+\frac {(a-b) \arctan \left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{3/2}}+\frac {2 a}{d e \sqrt {e \cot (c+d x)}}+\frac {(a+b) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d e^{3/2}}-\frac {(a+b) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d e^{3/2}} \]

[Out]

-1/2*(a-b)*arctan(1-2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))/d/e^(3/2)*2^(1/2)+1/2*(a-b)*arctan(1+2^(1/2)*(e*cot(
d*x+c))^(1/2)/e^(1/2))/d/e^(3/2)*2^(1/2)+1/4*(a+b)*ln(e^(1/2)+cot(d*x+c)*e^(1/2)-2^(1/2)*(e*cot(d*x+c))^(1/2))
/d/e^(3/2)*2^(1/2)-1/4*(a+b)*ln(e^(1/2)+cot(d*x+c)*e^(1/2)+2^(1/2)*(e*cot(d*x+c))^(1/2))/d/e^(3/2)*2^(1/2)+2*a
/d/e/(e*cot(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3610, 3615, 1182, 1176, 631, 210, 1179, 642} \[ \int \frac {a+b \cot (c+d x)}{(e \cot (c+d x))^{3/2}} \, dx=-\frac {(a-b) \arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{3/2}}+\frac {(a-b) \arctan \left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} d e^{3/2}}+\frac {(a+b) \log \left (\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d e^{3/2}}-\frac {(a+b) \log \left (\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d e^{3/2}}+\frac {2 a}{d e \sqrt {e \cot (c+d x)}} \]

[In]

Int[(a + b*Cot[c + d*x])/(e*Cot[c + d*x])^(3/2),x]

[Out]

-(((a - b)*ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d*e^(3/2))) + ((a - b)*ArcTan[1 + (Sqr
t[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d*e^(3/2)) + (2*a)/(d*e*Sqrt[e*Cot[c + d*x]]) + ((a + b)*Log[Sqr
t[e] + Sqrt[e]*Cot[c + d*x] - Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*d*e^(3/2)) - ((a + b)*Log[Sqrt[e] + Sq
rt[e]*Cot[c + d*x] + Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*d*e^(3/2))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1182

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(-a)*c]

Rule 3610

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b
*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 + b^2))), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3615

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a}{d e \sqrt {e \cot (c+d x)}}+\frac {\int \frac {b e-a e \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx}{e^2} \\ & = \frac {2 a}{d e \sqrt {e \cot (c+d x)}}+\frac {2 \text {Subst}\left (\int \frac {-b e^2+a e x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{d e^2} \\ & = \frac {2 a}{d e \sqrt {e \cot (c+d x)}}+\frac {(a-b) \text {Subst}\left (\int \frac {e+x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{d e}-\frac {(a+b) \text {Subst}\left (\int \frac {e-x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{d e} \\ & = \frac {2 a}{d e \sqrt {e \cot (c+d x)}}+\frac {(a+b) \text {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}+2 x}{-e-\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d e^{3/2}}+\frac {(a+b) \text {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}-2 x}{-e+\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d e^{3/2}}+\frac {(a-b) \text {Subst}\left (\int \frac {1}{e-\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 d e}+\frac {(a-b) \text {Subst}\left (\int \frac {1}{e+\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 d e} \\ & = \frac {2 a}{d e \sqrt {e \cot (c+d x)}}+\frac {(a+b) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d e^{3/2}}-\frac {(a+b) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d e^{3/2}}+\frac {(a-b) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{3/2}}-\frac {(a-b) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{3/2}} \\ & = -\frac {(a-b) \arctan \left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{3/2}}+\frac {(a-b) \arctan \left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{3/2}}+\frac {2 a}{d e \sqrt {e \cot (c+d x)}}+\frac {(a+b) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d e^{3/2}}-\frac {(a+b) \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d e^{3/2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.38 (sec) , antiderivative size = 194, normalized size of antiderivative = 0.85 \[ \int \frac {a+b \cot (c+d x)}{(e \cot (c+d x))^{3/2}} \, dx=\frac {3 a \left (2 \sqrt {2} \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )-2 \sqrt {2} \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )+\sqrt {2} \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )-\sqrt {2} \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )+8 \sqrt {\tan (c+d x)}\right )+8 b \operatorname {Hypergeometric2F1}\left (\frac {3}{4},1,\frac {7}{4},-\tan ^2(c+d x)\right ) \tan ^{\frac {3}{2}}(c+d x)}{12 d (e \cot (c+d x))^{3/2} \tan ^{\frac {3}{2}}(c+d x)} \]

[In]

Integrate[(a + b*Cot[c + d*x])/(e*Cot[c + d*x])^(3/2),x]

[Out]

(3*a*(2*Sqrt[2]*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] - 2*Sqrt[2]*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]] + Sq
rt[2]*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]] - Sqrt[2]*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c
+ d*x]] + 8*Sqrt[Tan[c + d*x]]) + 8*b*Hypergeometric2F1[3/4, 1, 7/4, -Tan[c + d*x]^2]*Tan[c + d*x]^(3/2))/(12*
d*(e*Cot[c + d*x])^(3/2)*Tan[c + d*x]^(3/2))

Maple [A] (verified)

Time = 0.03 (sec) , antiderivative size = 295, normalized size of antiderivative = 1.29

method result size
derivativedivides \(\frac {-\frac {2 \left (\frac {b \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e}-\frac {a \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}\right )}{e}+\frac {2 a}{e \sqrt {e \cot \left (d x +c \right )}}}{d}\) \(295\)
default \(\frac {-\frac {2 \left (\frac {b \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e}-\frac {a \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}\right )}{e}+\frac {2 a}{e \sqrt {e \cot \left (d x +c \right )}}}{d}\) \(295\)
parts \(-\frac {2 a e \left (-\frac {\sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e^{2} \left (e^{2}\right )^{\frac {1}{4}}}-\frac {1}{e^{2} \sqrt {e \cot \left (d x +c \right )}}\right )}{d}-\frac {b \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 d \,e^{2}}\) \(297\)

[In]

int((a+b*cot(d*x+c))/(e*cot(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(-2/e*(1/8*b/e*(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))
/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+
c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1))-1/8*a/(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c
)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)
+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c
))^(1/2)+1)))+2*a/e/(e*cot(d*x+c))^(1/2))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 890 vs. \(2 (180) = 360\).

Time = 0.29 (sec) , antiderivative size = 890, normalized size of antiderivative = 3.89 \[ \int \frac {a+b \cot (c+d x)}{(e \cot (c+d x))^{3/2}} \, dx=-\frac {{\left (d e^{2} \cos \left (2 \, d x + 2 \, c\right ) + d e^{2}\right )} \sqrt {\frac {d^{2} e^{3} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{6}}} + 2 \, a b}{d^{2} e^{3}}} \log \left (-{\left (a^{4} - b^{4}\right )} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} + {\left (a d^{3} e^{5} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{6}}} - {\left (a^{2} b - b^{3}\right )} d e^{2}\right )} \sqrt {\frac {d^{2} e^{3} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{6}}} + 2 \, a b}{d^{2} e^{3}}}\right ) - {\left (d e^{2} \cos \left (2 \, d x + 2 \, c\right ) + d e^{2}\right )} \sqrt {\frac {d^{2} e^{3} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{6}}} + 2 \, a b}{d^{2} e^{3}}} \log \left (-{\left (a^{4} - b^{4}\right )} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} - {\left (a d^{3} e^{5} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{6}}} - {\left (a^{2} b - b^{3}\right )} d e^{2}\right )} \sqrt {\frac {d^{2} e^{3} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{6}}} + 2 \, a b}{d^{2} e^{3}}}\right ) - {\left (d e^{2} \cos \left (2 \, d x + 2 \, c\right ) + d e^{2}\right )} \sqrt {-\frac {d^{2} e^{3} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{6}}} - 2 \, a b}{d^{2} e^{3}}} \log \left (-{\left (a^{4} - b^{4}\right )} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} + {\left (a d^{3} e^{5} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{6}}} + {\left (a^{2} b - b^{3}\right )} d e^{2}\right )} \sqrt {-\frac {d^{2} e^{3} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{6}}} - 2 \, a b}{d^{2} e^{3}}}\right ) + {\left (d e^{2} \cos \left (2 \, d x + 2 \, c\right ) + d e^{2}\right )} \sqrt {-\frac {d^{2} e^{3} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{6}}} - 2 \, a b}{d^{2} e^{3}}} \log \left (-{\left (a^{4} - b^{4}\right )} \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} - {\left (a d^{3} e^{5} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{6}}} + {\left (a^{2} b - b^{3}\right )} d e^{2}\right )} \sqrt {-\frac {d^{2} e^{3} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4} e^{6}}} - 2 \, a b}{d^{2} e^{3}}}\right ) - 4 \, a \sqrt {\frac {e \cos \left (2 \, d x + 2 \, c\right ) + e}{\sin \left (2 \, d x + 2 \, c\right )}} \sin \left (2 \, d x + 2 \, c\right )}{2 \, {\left (d e^{2} \cos \left (2 \, d x + 2 \, c\right ) + d e^{2}\right )}} \]

[In]

integrate((a+b*cot(d*x+c))/(e*cot(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/2*((d*e^2*cos(2*d*x + 2*c) + d*e^2)*sqrt((d^2*e^3*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^6)) + 2*a*b)/(d^2*e^
3))*log(-(a^4 - b^4)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)) + (a*d^3*e^5*sqrt(-(a^4 - 2*a^2*b^2 + b^4
)/(d^4*e^6)) - (a^2*b - b^3)*d*e^2)*sqrt((d^2*e^3*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^6)) + 2*a*b)/(d^2*e^3))
) - (d*e^2*cos(2*d*x + 2*c) + d*e^2)*sqrt((d^2*e^3*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^6)) + 2*a*b)/(d^2*e^3)
)*log(-(a^4 - b^4)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)) - (a*d^3*e^5*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/
(d^4*e^6)) - (a^2*b - b^3)*d*e^2)*sqrt((d^2*e^3*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^6)) + 2*a*b)/(d^2*e^3)))
- (d*e^2*cos(2*d*x + 2*c) + d*e^2)*sqrt(-(d^2*e^3*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^6)) - 2*a*b)/(d^2*e^3))
*log(-(a^4 - b^4)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)) + (a*d^3*e^5*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(
d^4*e^6)) + (a^2*b - b^3)*d*e^2)*sqrt(-(d^2*e^3*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^6)) - 2*a*b)/(d^2*e^3)))
+ (d*e^2*cos(2*d*x + 2*c) + d*e^2)*sqrt(-(d^2*e^3*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^6)) - 2*a*b)/(d^2*e^3))
*log(-(a^4 - b^4)*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c)) - (a*d^3*e^5*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(
d^4*e^6)) + (a^2*b - b^3)*d*e^2)*sqrt(-(d^2*e^3*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/(d^4*e^6)) - 2*a*b)/(d^2*e^3)))
- 4*a*sqrt((e*cos(2*d*x + 2*c) + e)/sin(2*d*x + 2*c))*sin(2*d*x + 2*c))/(d*e^2*cos(2*d*x + 2*c) + d*e^2)

Sympy [F]

\[ \int \frac {a+b \cot (c+d x)}{(e \cot (c+d x))^{3/2}} \, dx=\int \frac {a + b \cot {\left (c + d x \right )}}{\left (e \cot {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((a+b*cot(d*x+c))/(e*cot(d*x+c))**(3/2),x)

[Out]

Integral((a + b*cot(c + d*x))/(e*cot(c + d*x))**(3/2), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \cot (c+d x)}{(e \cot (c+d x))^{3/2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((a+b*cot(d*x+c))/(e*cot(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F]

\[ \int \frac {a+b \cot (c+d x)}{(e \cot (c+d x))^{3/2}} \, dx=\int { \frac {b \cot \left (d x + c\right ) + a}{\left (e \cot \left (d x + c\right )\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+b*cot(d*x+c))/(e*cot(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((b*cot(d*x + c) + a)/(e*cot(d*x + c))^(3/2), x)

Mupad [B] (verification not implemented)

Time = 13.31 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.60 \[ \int \frac {a+b \cot (c+d x)}{(e \cot (c+d x))^{3/2}} \, dx=\frac {2\,a}{d\,e\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}+\frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )}{d\,e^{3/2}}-\frac {{\left (-1\right )}^{1/4}\,a\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )}{d\,e^{3/2}}+\frac {{\left (-1\right )}^{1/4}\,b\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,1{}\mathrm {i}}{d\,e^{3/2}}+\frac {{\left (-1\right )}^{1/4}\,b\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,1{}\mathrm {i}}{d\,e^{3/2}} \]

[In]

int((a + b*cot(c + d*x))/(e*cot(c + d*x))^(3/2),x)

[Out]

(2*a)/(d*e*(e*cot(c + d*x))^(1/2)) + ((-1)^(1/4)*a*atan(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2)))/(d*e^(3/
2)) - ((-1)^(1/4)*a*atanh(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2)))/(d*e^(3/2)) + ((-1)^(1/4)*b*atan(((-1)
^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2))*1i)/(d*e^(3/2)) + ((-1)^(1/4)*b*atanh(((-1)^(1/4)*(e*cot(c + d*x))^(1/
2))/e^(1/2))*1i)/(d*e^(3/2))